Lecture Note
 Conformal Mapping
 MAT-303(Unit 3)

Dr. B. M. Patel
Government Science College, Gandhinagar
Gujarat University

April 21, 2017

Contents

1 Conformal Mapping 5
1.1 Introduction 5
1.2 Conformal Transformation 6
1.3 Some Standard Transformations 7
1.4 Examples 9
1.5 Bilinear transformations 18

Chapter 1

Conformal Mapping

1.1 Introduction

A complex number $z=x+i y$ can be represented by a point P whose coordinates are (x, y). The axis of x is called real axis and the axis of y is called imaginary axis. The plane is called as a z-plane or a complex plane or Argand plane.

A number of points (x, y) are plotted on z-plane by taking different values of z (i.e. different values of x and y). The curve C is drawn by joining the plotted points in the z-plane.

Now let $w=u+i v=f(z)=f(x+i y)$. To draw a curve of w, we take u-axis and v-axis. By plotting different (u, v) on w-plane and joining them, we get a curve C_{1} on w-plane.

For every point (x, y) in the z-plane, the relation $w=f(z)$ defines a corresponding point (u, v) in the w-plane.

Figure 1.1:
We call this as "transformation" or mapping of z-plane into w-plane. If a point z_{0} maps into the point w_{0}, w_{0} is known as the image of z_{0}.

As the point $P(x, y)$ traces a curve C in z-plane the transformed point $P^{\prime}(u, v)$ will trace a curve C_{1} in w-plane. We say that a curve C in the z-plane is mapped in to
the corresponding curve C_{1} in w-plane by the relation $w=f(z)$.

1.2 Conformal Transformation

Example 1.2.1. Transform the curve $x^{2}-y^{2}=4$ under the mapping $w=z^{2}$.

Solution: $w=z^{2} \Rightarrow u+i v=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$. This gives

$$
u=x^{2}-y^{2} \text { and } v=2 x y
$$

Figure 1.2: z-plane

Image of the curve $x^{2}-y^{2}$ is a straight line, $u=4$ parallel to the v-axis in w plane.

Definition 1.2.1 (Conformal Transformation). Let two curves C_{1}, C_{2} in the z-plane intersect at the point P and the corresponding curve $C_{1}^{\prime}, C_{2}^{\prime}$ in the z-plane intersect at P^{\prime}. If the angle of intersection of the curves at P in z-plane is the same as the angle of intersection of the curves of w-plane at P^{\prime} in magnitude and sense, then the transformation is called conformal transformation at P.

Theorem 1.2.2. Let $f(z)$ be an analytic function of z in a region D of the z-plane and $f^{\prime}(z) \neq 0$ in D. Then the mapping $w=f(z)$ is conformal at all points of D.

Proof. Let z_{0} be an interior point of the region D and let C_{1} and C_{2} be two continuous curves passing through z_{0}. Suppose these curves have definite tangents at z_{0} making angles α_{1} and α_{2} respectively with the the real axis. Take the points z_{1} and z_{2} on the curves C_{1} and C_{2} near z_{0} at the same distance r from the point z_{0}. Then we can write

$$
z_{1}-z_{0}=r e^{i \theta_{1}} \quad \text { and } \quad z_{2}-z_{0}=r e^{i \theta_{2}}
$$

As $r \rightarrow 0, \theta_{1} \rightarrow \alpha_{1}$ and $\theta_{2} \rightarrow \alpha_{2}$. (see Figure)

Now as a point moves from z_{0} to z_{1} along C_{1}, the image point moves along C_{1}^{\prime} in the w-plane from w_{0} to w_{1}. Similarly as a point moves from z_{0} to z_{2} along C_{2}, the image point moves along C_{2}^{\prime} in the w-plane from w_{0} to w_{2}. We suppose that

$$
w_{1}-w_{0}=\rho_{1} e^{i \varphi_{1}} \quad \text { and } \quad w_{2}-w_{0}=\rho_{2} e^{i \varphi_{2}}
$$

Since $f(z)$ is analytic at z_{0}, we have

$$
\begin{equation*}
\lim _{z_{1} \rightarrow z_{0}} \frac{f\left(z_{1}\right)-f\left(z_{0}\right)}{z_{1}-z_{0}}=f^{\prime}\left(z_{0}\right) \Rightarrow \lim _{z_{1} \rightarrow z_{0}} \frac{w_{1}-w_{0}}{z_{1}-z_{0}}=f^{\prime}\left(z_{0}\right) \tag{1.1}
\end{equation*}
$$

As $f^{\prime}\left(z_{0}\right) \neq 0$, we may write $f^{\prime}\left(z_{0}\right)=R_{0} e^{i \theta_{0}}$. It follows that

$$
\lim _{z_{1} \rightarrow z_{0}} \frac{\rho_{1} e^{i \varphi_{1}}}{r e^{i \theta_{1}}}=R_{0} e^{i \theta_{0}} \Rightarrow \lim _{z_{1} \rightarrow z_{0}} \frac{\rho_{1}}{r_{1}} e^{i\left(\varphi_{1}-\theta_{1}\right)}=R_{0} e^{i \theta_{0}}
$$

Hence $\lim _{z_{1} \rightarrow z_{0}} \varphi_{1}-\theta_{1}=\theta_{0} \Rightarrow \varphi_{1}-\alpha_{1}=\theta_{0} \Rightarrow \varphi_{1}=\alpha_{1}+\theta_{0}$.
Thus the curve C_{1}^{\prime} has a definite tangent at w_{0} making an angle $\alpha_{1}+\theta_{0}$ with the real axis. Similarly it can be shown that the curve C_{2}^{\prime} has a definite tangent at w_{0} making an angle $\alpha_{2}+\theta_{0}$ with the real axis. Consequently the angle between the tangent at w_{0} to the curve C_{1}^{\prime} and C_{2}^{\prime} is equal to

$$
\left(\alpha_{2}+\theta_{0}\right)-\left(\alpha_{1}+\theta_{0}\right)=\alpha_{2}-\alpha_{1}
$$

which is the same as the angle between the tangents to C_{1} and C_{2} at z_{0}. Also the angle between the curves has the same sense in the two figures. Hence the mapping $w=f(z)$ is conformal.

1.3 Some Standard Transformations

1. Translation: The mapping is $w=z+c$, where c is a complex constant.

Let $z=x+i y, w=u(x, y)+i v(x, y)$ and $c=c_{1}+i c_{2}$. Then $w=z+c$ will imply

$$
\begin{aligned}
u+i v & =(x+i y)+\left(c_{1}+i c_{2}\right) \\
& =\left(x+c_{1}\right)+i\left(y+c_{2}\right)
\end{aligned}
$$

By comparing real and imaginary parts, we get,

$$
u=x+c_{1}, \text { and } v=y+c_{2}
$$

Thus, the transformation of a point $P(x, y)$ in the z-plane onto a point $P^{\prime}\left(x+c_{1}, y+c_{2}\right)$.
Hence, the transformation is a translation of the axes and preserves the shape and size.
2. Rotation and Magnification: This mapping is $w=c z$, where c is a complex constant.
(a) Cartesian form:

Let $w=u(x, y)+i v(x, y), z=x+i y$ and $c=c_{1}+i c_{2}$. Then $w=c z$ will imply that

$$
\begin{aligned}
u+i v & =\left(c_{1}+i c_{1}\right)(x+i y) \\
& =\left(c_{1} x-c_{2} y\right)+i\left(c_{1} y+c_{2} x\right)
\end{aligned}
$$

By comparing real and imaginary parts,

$$
u(x, y)=c_{1} x-c_{2} y \text { and } v(x, y)=c_{1} y-c_{2} x
$$

Thus, the transformations of a point $P(x, y)$ in the z-plane into a point $P^{\prime}\left(c_{1} x-c_{2} y, c_{1} y+c_{2} x\right)$ in w-plane.
(b) Polar form:

Let $w=R e^{i \phi}, z=r e^{i \theta}$ and $c=\rho e^{i \alpha}$. Then transformation $w=c z$ becomes

$$
R e^{i \phi}=\rho e^{i \alpha} \cdot r e^{i \theta}=\rho r e^{i(\alpha+\theta)}
$$

By comparing, we have

$$
R=\rho r \text { and } \phi=\theta+\alpha
$$

Thus, the transformation maps a point $P(r, \theta)$ in the z-plane into a point $P^{\prime}(\rho r, \theta+\alpha)$ in the w-plane.
Hence, the transformations consists of magnification of the radius vector of P by $\rho=|c|$ and its rotation through the angle α.
3. Inversion and Reflection: The transformation is $w=\frac{1}{z}$.
(a) Cartesian Form: Let $w=u+i v, z=x+i y$, then $w=\frac{1}{z}$

$$
\begin{aligned}
\Rightarrow u+i v & =\frac{1}{x+i y} \\
& =\frac{1}{x+i y} \times \frac{x-i y}{x-i y} \\
& =\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

By comparing the real and the imaginary parts, we get

$$
u=\frac{x}{x^{2}+y^{2}} \text { and } v=-\frac{y}{x^{2}+y^{2}}
$$

Thus, the transformation maps a point $P(x, y)$ in the z-plane into a point $P^{\prime}\left(\frac{x}{x^{2}+y^{2}},-\frac{y}{x^{2}+y^{2}}\right)$ in the w-plane.
(b) Polar Form: Let $w=R e^{i \phi}$ and $z=r e^{i \theta}$. Then the transformation becomes

$$
R e^{i \phi}=\frac{1}{r} e^{-i \theta}
$$

so that $R=\frac{1}{r}$ and $\phi=-\theta$.
Thus under the transformation $w=\frac{1}{z}$, any point $P(r, \theta)$ in z-plane is mapped into the point $P^{\prime}\left(\frac{1}{r},-\theta\right)$.
Note that, the origin $z=0$ is mapped to the point $w=\infty$, called the point at infinity.

1.4 Examples

Example 1.4.1. Consider the transformation $w=z+(1+i)$ and determine the region in the w-plane corresponding to the triangular region bounded by the lines $x=0, y=0$ and $x+y=1$ in the z-plane.

Solution: The given triangular region bounded by the lines $x=0, y=0$ and $x+y=1$ is shown in fig. Then the vertices of the triangular region are $(0,0),(1,0)$ and $(0,1)$. Now, the given transformation is

Figure 1.3:

$$
\begin{aligned}
& w=z+(1+i) \\
\Rightarrow & u+i v=(x+i y)+(1+i) \\
\Rightarrow & u+i v=(x+1)+i(y+1) \\
\Rightarrow & u=x+1 \text { and } v=y+1
\end{aligned}
$$

$$
\begin{array}{r}
x=0 \Rightarrow u=1 ; \quad y=0 \Rightarrow v=1 ; \quad x+y=1 \Rightarrow u-1+v-1=1 \\
\Rightarrow u+v=3
\end{array}
$$

The line $x=0$ maps into $u=1$, which is also the vertical line in w-plane.
Also, the line $y=0$ maps into $v=1$, which is the horizontal line in w-plane.
And, the line $x+y=1$ maps into the line $u+v=3$.
Hence, the region becomes triangle bounded by the lines $u=1, v=1, u+v=3$; which is shown in the fig 1.3.

Example 1.4.2. Find the image of the circle $|z|=2$ under the transformation $w=i z+1$.

Solution: Let $w=u+i v$ and $z=x+i y$. Then

$$
\begin{aligned}
& w= i z+1 \\
& \Rightarrow u+i v= i(x+i y)+1=i x-y+1=(1-y)+i x \\
& \Rightarrow u=1-y \text { and } v=x \\
& \Rightarrow \quad y=1-u \text { and } x=v
\end{aligned}
$$

Now,

$$
\begin{aligned}
|z|=2 & \Rightarrow|z|^{2}=4 \\
& \Rightarrow|x+i y|^{2}=4 \\
& \Rightarrow x^{2}+y^{2}=4 \\
& \Rightarrow v^{2}+(1-u)^{2}=4 \\
& \Rightarrow(u-1)^{2}+v^{2}=4
\end{aligned}
$$

which is equation of the circle centered at $(1,0)$ and radius is 2 . Thus the transformation rotates the circle by $\frac{\pi}{2}$ and translate its by unity to the right.

Example 1.4.3. Find the image of the line $y-x+1=0$ under the mapping $w=\frac{1}{z}$. Show it graphically.

Solution: Let $w=u+i v, z=x+i y$. Then the transformation $w=\frac{1}{z}$

$$
\begin{array}{ll}
\Rightarrow & u+i v=\frac{1}{x+i y} \\
\Rightarrow & x+i y=\frac{1}{u+i v} \\
\Rightarrow & x+i y=\frac{1}{u+i v} \times \frac{u-i v}{u-i v} \\
\Rightarrow & x+i y=\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}}
\end{array}
$$

comparing real and imaginary parts

$$
\Rightarrow \quad x=\frac{u}{u^{2}+v^{2}} \quad y=-\frac{v}{u^{2}+v^{2}}
$$

Now

$$
\begin{aligned}
& y-x+1=0 \\
\Rightarrow & x-y=1 \\
\Rightarrow & \frac{u}{u^{2}+v^{2}}+\frac{v}{u^{2}+v^{2}}=1 \\
\Rightarrow & u+v=u^{2}+v^{2} \\
\Rightarrow & u^{2}-u+v^{2}-v=0 \\
\Rightarrow & u^{2}-u+\frac{1}{4}+v^{2}-v+\frac{1}{4}=\frac{1}{2} \\
\Rightarrow & \left(u-\frac{1}{2}\right)^{2}+\left(v-\frac{1}{2}\right)^{2}=\frac{1}{2}
\end{aligned}
$$

which is the equation of the circle centered at $\left(\frac{1}{2}, \frac{1}{2}\right)$ and radius is $\frac{1}{\sqrt{2}}$ in w-plane.

Figure 1.4:

Example 1.4.4. Show that the image of the hyperbola $x^{2}-y^{2}=1$ under the transformation $w=\frac{1}{z}$ is the lemniscate $R^{2}=\cos 2 \phi$, where $w=R e^{i \phi}$.

Solution: Let $w=u+i v, z=x+i y$. Then

$$
\begin{aligned}
& w=\frac{1}{z} \\
\Rightarrow \quad & z=\frac{1}{w} \\
\Rightarrow \quad & x+i y=\frac{1}{u+i v} \times \frac{u-i v}{u-i v}=\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}} \\
\Rightarrow \quad & x=\frac{u}{u^{2}+v^{2}}, \quad y=-\frac{v}{u^{2}+v^{2}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& x^{2}-y^{2}=1 \\
\Rightarrow & \left(\frac{u}{u^{2}+v^{2}}\right)^{2}-\left(\frac{v}{u^{2}+v^{2}}\right)^{2}=1 \\
\Rightarrow & u^{2}-v^{2}=\left(u^{2}+v^{2}\right)^{2}
\end{aligned}
$$

putting $u=R \cos \phi$ and $v=R \sin \phi\left(\because w=R e^{i \phi}\right)$, we get,

$$
\begin{aligned}
R^{2}\left(\cos ^{2} \phi-\sin ^{2} \phi\right) & =\left[R^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)\right]^{2} \\
& =R^{4} \\
\Rightarrow R^{2} & =\cos ^{2} \phi-\sin ^{2} \phi \\
& =\cos 2 \phi
\end{aligned}
$$

Hence, the image of hyperbola in z-plane is $R^{2}=\cos 2 \phi$, which is lemniscate shown in fig.

Figure 1.5:

Example 1.4.5. Show that the transformation $w=\frac{1}{z}$ maps a circle in z-plane to a circle in the w-plane or a straight line if the former passes through origin.

Solution: The general equation of a circle in the z-plane is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{1.2}
\end{equation*}
$$

Let $w=u+i v$ and $z=x+i y$. Then

$$
\begin{aligned}
w & =\frac{1}{z} \Rightarrow z=\frac{1}{w} \\
\Rightarrow x+i y & =\frac{1}{u+i v} \\
\Rightarrow x+i y & =\frac{u-i v}{(u+i v)(u-i v)} \\
& =\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}} \\
\Rightarrow x & =\frac{u}{u^{2}+v^{2}} \text { and } y=-\frac{v}{u^{2}+v^{2}}
\end{aligned}
$$

Substituting the value of x and y in equation 1.2 , we get,

$$
\begin{align*}
& \frac{u^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{v^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{2 g u}{u^{2}+v^{2}}-\frac{2 f v}{u^{2}+v^{2}}+c=0 \\
\Rightarrow & \frac{1}{u^{2}+v^{2}}+\frac{2 g u}{u^{2}+v^{2}}-\frac{2 f v}{u^{2}+v^{2}}+c=0 \\
\Rightarrow & c\left(u^{2}+v^{2}\right)+2 g u-2 f v+1=0 \tag{1.3}
\end{align*}
$$

Now, if $c \neq 0$ circle does not pass through the origin and equation 1.3 represents a circle in the w-plane.

If $c=0$ circle passes through the origin and equation 1.3 becomes $2 g u-2 f v+$ $1=0$, which is a straight line.
Example 1.4.6. Show that the transformation $w=\frac{1}{z}$ maps a straight line in z plane to a straight line in the w-plane or a circle through origin.

Solution: The general equation of a line in the z-plane is

$$
\begin{equation*}
a x+b y+c=0 . \tag{1.4}
\end{equation*}
$$

Let $w=u+i v$ and $z=x+i y$. Then

$$
\begin{aligned}
w & =\frac{1}{z} \Rightarrow z=\frac{1}{w} \\
\Rightarrow x+i y & =\frac{1}{u+i v} \\
\Rightarrow x+i y & =\frac{u-i v}{(u+i v)(u-i v)} \\
& =\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}} \\
\Rightarrow x & =\frac{u}{u^{2}+v^{2}}, y=-\frac{v}{u^{2}+v^{2}}
\end{aligned}
$$

Substituting the value of x and y in equation 1.4, we get,

$$
\begin{align*}
& a \frac{u}{\left(u^{2}+v^{2}\right)}-b \frac{v}{\left(u^{2}+v^{2}\right)}+c=0 \\
\Rightarrow \quad & a u-b v+c\left(u^{2}+v^{2}\right)=0 \tag{1.5}
\end{align*}
$$

Now, if $c \neq 0$ line 1.4 does not passing through the origin and equation 1.5 represents a circle in the w-plane passing through the origin.

If $c=0$ line 1.4 passes through the origin and equation 1.5 becomes $a u-b v=0$, which is a straight line passing through the origin.

Example 1.4.7. Find the image of the circle $x^{2}+y^{2}=4 y$ under the transformation $w=\frac{1}{z}$. Show it graphically.

Solution: The given transformation is $w=\frac{1}{z}$. Therefore,

$$
z=\frac{1}{w} \Rightarrow x+i y=\frac{1}{u+i v}=\frac{u-i v}{u^{2}+v^{2}} .
$$

By comparing real and imaginary parts,

$$
x=\frac{u}{u^{2}+v^{2}}, y=-\frac{v}{u^{2}+v^{2}} .
$$

$x^{2}+y^{2}=4 y$ or $(x-0)^{2}+(y-2)^{2}=4$ is the equation of circle centered $(0,2)$ and radius 2 , shown in the figure.

Figure 1.6:

Now,

$$
\begin{aligned}
& x^{2}+y^{2}-4 y=0 \\
\Rightarrow & \frac{u^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{v^{2}}{\left(u^{2}+v^{2}\right)^{2}}+4 \frac{v}{u^{2}+v^{2}}=0 \\
\Rightarrow & \frac{u^{2}+v^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{4 v}{u^{2}+v^{2}}=0 \\
\Rightarrow & 1+4 v=0 \\
\Rightarrow & v=-\frac{1}{4} .
\end{aligned}
$$

Which is equation of horizontal line through $\left(0,-\frac{1}{4}\right)$ in the w-plane.
Example 1.4.8. Find the image of the infinite strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$. Also, show the region graphically.

Solution: Let $w=u+i v, z=x+i y$. Then the transformation $w=\frac{1}{z}$

$$
\begin{aligned}
& \Rightarrow \quad z=\frac{1}{w} \\
& \Rightarrow \quad x+i y=\frac{1}{u+i v} \times \frac{u-i v}{u-i v}=\frac{u-i v}{u^{2}+v^{2}}=\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}}
\end{aligned}
$$

Thus,

$$
\begin{align*}
x & =\frac{u}{u^{2}+v^{2}} \tag{1.6}\\
y & =-\frac{v}{u^{2}+v^{2}} \tag{1.7}
\end{align*}
$$

The strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ is the z-plane is shown in figure.

Figure 1.7:
Now,

$$
\begin{aligned}
y=\frac{1}{4} & \Rightarrow-\frac{v}{u^{2}+v^{2}}=\frac{1}{4} \\
& \Rightarrow-4 v=u^{2}+v^{2} \\
& \Rightarrow 0=u^{2}+v^{2}+4 v+4-4 \\
& \Rightarrow u^{2}+(v+2)^{2}=4
\end{aligned}
$$

which is equation of the circle centered at $(0,-2)$ and radius is 2 .
Thus, $y \geq \frac{1}{4}$ will imply $u^{2}+(v+2)^{2} \leq 4$ which is the interior of the circle centered at $(0,-2)$ with the radius is 2 .

Similarly,

$$
\begin{aligned}
y=\frac{1}{2} & \Rightarrow-\frac{v}{u^{2}+v^{2}}=\frac{1}{2} \\
& \Rightarrow-2 v=u^{2}+v^{2} \\
& \Rightarrow 0=u^{2}+v^{2}+2 v \\
& \Rightarrow 0=u^{2}+(v+1)^{2}-1 \\
& \Rightarrow u^{2}+(v+1)^{2}=1
\end{aligned}
$$

which is equation of the circle centered at $(0,-1)$ and radius is 1 .
Thus, $y \leq \frac{1}{2}$ will imply $u^{2}+(v+1)^{2} \geq 1$, which is the exterior of the circle centered at $(0,-1)$ with the radius is 1 .

Hence, $\frac{1}{4} \leq y \leq \frac{1}{2} \Rightarrow$ the points exterior to the circle centered at $(0,-1)$ and radius is 1 and interior of the circle centered at $(0,-2)$ and the radius is 2 . Which is called the Annulus or Ring in the w-plane. It is shown in the figure.

Example 1.4.9. Find the image of the circle $|z+2 i|=2$ under the transformation $w=\frac{1}{z}$.

Solution: Let $w=u+i v, z=x+i y$. Now,

$$
\begin{aligned}
& |z+2 i|=2 \\
\Rightarrow & \left|\frac{1}{w}+2 i\right|=2 \\
\Rightarrow & |1+2 i w|=2|w| \\
\Rightarrow & |1+2 i(u+i v)|=2|u+i v| \\
\Rightarrow & |1+2 i u-2 v|=2|u+i v| \\
\Rightarrow & (1-2 v)^{2}+4 u^{2}=4\left(u^{2}+v^{2}\right) \\
\Rightarrow & 1+4 v^{2}-4 v+4 u^{2}=4 u^{2}+4 v^{2} \\
\Rightarrow & 1-4 v=0 \\
\Rightarrow & v=\frac{1}{4},
\end{aligned}
$$

which is the straight line horizontal to the u -axis in the w-plane.
Example 1.4.10. Find the image of the region bounded by the lines $x=1, y=1$ and $x+y=1$ under the transformation $w=z^{2}$. Show the regions graphically.

Solution: Let $w=u+i v$ and $z=x+i y$. Then the transformation $w=z^{2}$ in the cartesian form is

$$
\begin{gather*}
u+i v=(x+i y)^{2}=x^{2}-y^{2}+i(2 x y) \\
u=x^{2}-y^{2} \tag{1.8}\\
v=2 x y \tag{1.9}
\end{gather*}
$$

The triangular region bounded by the lines $x=1, y=1, x+y=1$ is shown in figure The vertices of the triangle are $(1,0),(0,1)$ and $(1,1)$. The corresponding points in the w-plane can be found by using (1.8) and (1.9), which are $(1,0),(-1,0)$ and $(0,2)$ respectively.

For the image of the line $x=1$ by equation (1.8) and (1.9), we get

$$
\begin{aligned}
& u=1-y^{2} \text { and } v=2 y \\
\Rightarrow & u=1-\left(\frac{v}{2}\right)^{2} \\
\Rightarrow & 4-v^{2}=4 u \\
\Rightarrow & v^{2}=-4(u-1)
\end{aligned}
$$

which is the equation of the parabola vertex at $(1,0)$.
Putting $u=0, v= \pm 2$, i.e., it is the parabola vertex at $(1,0)$ and passes through (0, 士 2) 。

Also, for the image of the line $y=1$ by equation (1.8) and (1.9), we get

$$
\begin{aligned}
& \\
& u=x^{2}-1 \text { and } v=2 x \\
\Rightarrow \quad & u=\frac{v^{2}}{4}-1 \\
\Rightarrow & 4 u=v^{2}-4 \\
\Rightarrow & v^{2}=4(u+1)
\end{aligned}
$$

which is the equation of the parabola in w-plane. Putting $u=0, v= \pm 2$ i.e., it is the parabola having vertex at $(-1,0)$ and passes through $(0, \pm 2)$.

Again, for the image of $x+y=1$, i.e., $y=1-x$ by equation (1.8) and (1.9), we get

$$
\begin{aligned}
u= & x^{2}-(1-x)^{2} \text { and } v=2 x(1-x) \\
& \Rightarrow u=x^{2}-1+2 x-x^{2} \\
& \Rightarrow u=2 x-1 \\
& \Rightarrow x=\frac{u+1}{2}
\end{aligned}
$$

Also, $v=2 x(1-x)$

$$
\begin{aligned}
\Rightarrow v & =2\left(\frac{u+1}{2}\right)\left(1-\frac{u+1}{2}\right) \\
\Rightarrow v & =\frac{1}{2}(u+1)(1-u)=\frac{1}{2}\left(1-u^{2}\right) \\
\Rightarrow \frac{1}{2} u^{2} & =-\left(v-\frac{1}{2}\right) \\
\Rightarrow u^{2} & =-2\left(v-\frac{1}{2}\right)
\end{aligned}
$$

which is the equation of the parabola having vertex $(0,1 / 2)$ and passes through the point $(\pm 1,0)$.

Hence, the image of the triangular region is the region bounded by the parabola $v^{2}=-4(u-1), v^{2}=4(u+1)$ and $u^{2}=-2(v-1 / 2)$ in the w-plane, which is shown in the figure.

1.5 Bilinear transformations

A transformation of the form

$$
w=f(z)=\frac{a z+b}{c z+d}, a d-b c \neq 0
$$

a, b, c, d are complex constants is called a bilinear transformation or möbius transformation. Bilinear transformation is conformal since

$$
\frac{d w}{d z}=\frac{a d-b c}{(c z+d)^{2}} \neq 0 .
$$

The inverse mapping of the above transformation is

$$
f^{-1}(w)=z=\frac{-d w+b}{c w-a}
$$

which is also a bilinear transformations.
We can extend f and f^{-1} to mappings in the extended complex plane. The value $f(\infty)$ should be chosen, so that $f(z)$ has a limit ∞.

Therefore, we define

$$
f(\infty)=\lim _{z \rightarrow \infty} f(z)=\lim _{z \rightarrow \infty} \frac{a+b / z}{c+d / z}=\frac{a}{c}
$$

and the inverse is

$$
f^{-1}\left(\frac{a}{c}\right)=\infty
$$

Similarly, the value $f^{-1}(\infty)$ is obtained by

$$
f^{-1}(\infty)=\lim _{w \rightarrow \infty} f^{-1}(w)=\lim _{w \rightarrow \infty} \frac{-d+b / w}{c-a / w}=\frac{-d}{c}
$$

and the inverse is

$$
f\left(-\frac{d}{c}\right)=\infty .
$$

With these extensions we conclude that the transformation $w=f(z)$ is a one to one mapping of the extended complex z-plane into the extended complex w-plane.
Note 1.5.1.

1. Every bilinear transformation

$$
w=\frac{a z+b}{c z+d}, a d-b c \neq 0
$$

is the combination of basic transformations translations, rotations and magnification and inversion.
2. There exists a unique bilinear transformation that maps four distinct points z_{1}, z_{2}, z_{3} and z_{4} on to four distinct points w_{1}, w_{2}, w_{3} and w_{4} respectively. An implicit formula for the mapping is given by,

$$
\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(w_{1}-w_{3}\right)\left(w_{2}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{2}-w_{3}\right)}
$$

3. The above expression is known as cross-ratio of four points.
4. A point z_{0} in complex plane is called a fixed point for the function f if $f\left(z_{0}\right)=$ z_{0}.

Example 1.5.1. Find the bilinear transformation $w=f(z)$. Which maps the points $z=1, i,-1$ onto the points $w=i, 0,-i$. Hence find the image of $|z| \leq 1$, interior of the circle centered at the origin and radius 1.

Solution: Let $z_{1}=1, z_{2}=i, z_{3}=-1$ and $z_{4}=z$ and corresponding images be $w_{1}=i, w_{2}=0, w_{3}=-i$ and $w_{4}=w$.

Now, we know that the cross-ratio of four points is invariant under a bilinear transformation.

$$
\begin{aligned}
& \frac{\left(w_{1}-w_{3}\right)\left(w_{2}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{2}-w_{3}\right)}=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)} \\
\Rightarrow & \frac{(i+i)(0-w)}{(i-w)(0+i)}=\frac{(1+1)(i-z)}{(1-z)(i+1)} \\
\Rightarrow & \frac{-2 i w}{(i-w) i}=\frac{2(i-z)}{(1+i)(1-z)} \\
\Rightarrow & \frac{w}{w-i}=\frac{z-i}{(1+i)(z-1)} \\
\Rightarrow & w(1+i)(z-1)=(z-i)(w-i) \\
\Rightarrow & w[(z-1)+i(z-1)]=(z-i) w-i(z-i) \\
\Rightarrow & w[(z-1)+i(z-1)-(z-i)]=-i(z-i) \\
\Rightarrow & w[(z-1)+i(z-1)-z+i]=-i(z-i) \\
\Rightarrow & w[i(z-1)-1+i]=-i z-1 \\
\Rightarrow & w(i z-1)=-(1+i z) \\
\Rightarrow & w=\frac{1+i z}{1-i z}
\end{aligned}
$$

Thus, $w=\frac{1+i z}{1-i z}$ is the required bilinear transformation. Also,

$$
\begin{aligned}
& w(1-i z)=1+i z \\
\Rightarrow & w-1=(w+1) i z \\
\Rightarrow & z=\frac{w-1}{i(w+1)} \\
\Rightarrow & z=-\frac{i(w-1)}{w+1} \\
\Rightarrow & z=\frac{i(1-w)}{1+w}
\end{aligned}
$$

Now, for the image of $|z| \leq 1$

$$
\begin{aligned}
& \Rightarrow\left|i \frac{1-w}{1+w}\right| \leq 1 \\
& \Rightarrow|i|\left|\frac{1-w}{1+w}\right| \leq 1 \\
& \Rightarrow|1-w| \leq|1+w| \\
& \Rightarrow|1-w|^{2} \leq|1+w|^{2} \\
& \Rightarrow|1-u-i v|^{2} \leq|1+u+i v|^{2} \quad(\because w=u+i v) \\
& \Rightarrow \quad(1-u)^{2}+v^{2} \leq(1+u)^{2}+v^{2} \\
& \Rightarrow 1-2 u+u^{2}+v^{2} \leq 1+2 u+u^{2}+v^{2} \\
& \Rightarrow 4 u \geq 0 \\
& \Rightarrow u \geq 0
\end{aligned}
$$

which is half of the w-plane includes the first and the fourth quadrant.

Example 1.5.2. Find the image of the circle $|z|=1$ in the w-plane under the bilinear transformation $w=f(z)=\frac{z-i}{1-i z}$. Also, find the fixed points of f.

Solution: Here the transformation is

$$
\begin{aligned}
& w=\frac{z-i}{1-i z} \\
\Rightarrow & w(1-i z)=z-i \\
\Rightarrow & w+i=(i w+1) z \\
\Rightarrow & z=\frac{w+i}{1+i w}
\end{aligned}
$$

To find the image of the circle $|z|=1$,

$$
\begin{aligned}
& |z|=1 \\
\Rightarrow & \left|\frac{w+i}{1+i w}\right|=1 \\
\Rightarrow & |w+i|=|1+i w| \\
\Rightarrow & |u+i v+i|=|1+i(u+i v)| \quad(\because w=u+i v) \\
\Rightarrow & |u+i(v+1)|^{2}=|1-v+i u|^{2} \\
\Rightarrow & u^{2}+(v+1)^{2}=(1-v)^{2}+u^{2} \\
\Rightarrow & u^{2}+v^{2}+2 v+1=1+u^{2}+v^{2}-2 v \\
\Rightarrow & 4 v=0 \\
\Rightarrow & v=0
\end{aligned}
$$

which is the equation of the u-axis (or the real axis) of the w-plane.
For fixed points of f, let $f(z)=z$ then

$$
\begin{aligned}
& \frac{z-i}{1-i z}=z \\
\Rightarrow & z-i=z-i z^{2} \\
\Rightarrow & z^{2}=1 \\
\Rightarrow & z= \pm 1
\end{aligned}
$$

Hence $z=1$ and $z=-1$ are the fixed points of f.
Example 1.5.3. If $w_{1}, w_{2}, w_{3}, w_{4}$ are distinct images of $z_{1}, z_{2}, z_{3}, z_{4}$ (all distinct) under the transformation, $w=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)$. Then show that

$$
\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)}=\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)}
$$

Solution: We have, $w_{1}, w_{2}, w_{3}, w_{4}$ are distinct images of $z_{1}, z_{2}, z_{3}, z_{4}$ respectively under the transformation $w=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)$. So

$$
\begin{equation*}
w_{i}=\frac{a z_{i}+b}{c z_{i}+d} \quad(a d-b c \neq 0) \quad(i=1,2,3,4 .) \tag{1.10}
\end{equation*}
$$

Now,

$$
\begin{align*}
& w_{1}-w_{2}=\frac{a z_{1}+b}{c z_{1}+d}-\frac{a z_{2}+b}{c z_{2}+d} \\
= & \frac{\left(a z_{1}+b\right)\left(a z_{2}+b\right)-\left(c z_{1}+d\right)\left(c z_{2}+d\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \\
= & \frac{(a d-b c)\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \tag{1.11}
\end{align*}
$$

From (1.11) we have

$$
\begin{aligned}
\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)} & =\frac{\left[\frac{(a d-b c)\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)}\right]\left[\frac{(a d-b c)\left(z_{3}-z_{4}\right)}{\left(c z_{3}+d\right)\left(c z_{4}+d\right)}\right]}{\left[\frac{(a d-b c)\left(z_{1}-z_{4}\right)}{\left(c z_{1}+d\right)\left(c z_{4}+d\right)}\right]\left[\frac{(a d-b c)\left(z_{3}-z_{2}\right)}{\left(c z_{2}+d\right)\left(c z_{2}+d\right)}\right]} \\
& =\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)}
\end{aligned}
$$

Example 1.5.4. Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $w=0,1, \infty$.

Solution: Let $z_{1}=1, z_{2}=i, z_{3}=-1$ and $w_{1}=0, w_{2}=1, w_{3}=\infty$.
By definition, the bilinear transformation is,

$$
\begin{equation*}
w=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0 \tag{1.12}
\end{equation*}
$$

where a, b, c, d are complex numbers.
Since the images of z_{1}, z_{1} and z_{3} are w_{1}, w_{2} and w_{3} respectively. The points z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} satisfy the given equation 1.12.

Therefore, we have

$$
0=\frac{a(1)+b}{c(1)+d} \quad 1=\frac{a(i)+b}{c(i)+d} \quad \text { and } \quad \infty=\frac{a(-1)+b}{c(-1)+d}
$$

On simplification, we get,

$$
\begin{gather*}
a+b=0 \tag{1.13}\\
a i+b=c i+d \tag{1.14}\\
-c+d=0 \tag{1.15}
\end{gather*}
$$

From equation 1.13 and 1.15 , we get, $b=-a$ and $d=c$. Now, equation 1.14 becomes,

$$
\begin{aligned}
& a i+b=c i+d \\
\Rightarrow & a i-a=c i+c \\
\Rightarrow & a(-1+i)=c(1+i) \\
\Rightarrow & c=\left(\frac{-1+i}{1+i}\right) a \\
\Rightarrow & c=\left[\frac{(-1+i)(1-i)}{1-i^{2}}\right] a \\
\Rightarrow & c=\left[-\frac{\left(1-2 i+i^{2}\right)}{2}\right] a \\
\Rightarrow & c=i a .
\end{aligned}
$$

Thus, $b=-a, c=d=i a$.
Now, from equation (1.12), we get,

$$
\begin{aligned}
w & =\frac{a z+b}{c z+d}=\frac{a z-a}{i a z+i a}=\frac{a(z-1)}{i a(z+1)}=\frac{i(z-1)}{i^{2}(z+1)} \quad(a \neq 0) \\
& =-\frac{i(z-1)}{(z+1)}=\frac{i(1-z)}{(z+1)}
\end{aligned}
$$

Hence, $w=\frac{i(1-z)}{1+z}$ is the required bilinear transformation.
Example 1.5.5 (Example 1.5.4 by alternate method). Find the bilinear transformation which maps the point $z=1, i,-1$ on to the points $w=0,1, \infty$.

Solution: Let $z_{1}=1, z_{2}=i, z_{3}=-1, z_{4}=z$ and $w_{1}=0, w_{2}=1, w_{3}=\infty, w_{4}=w$.
Now we know that the cross ratio for the bilinear transformation is constant.

$$
\begin{aligned}
& \frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)}=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)} \\
\Rightarrow & \frac{\left(w_{1}-w_{2}\right)\left(1-\frac{w_{4}}{w_{3}}\right)}{\left(w_{1}-w_{4}\right)\left(1-\frac{w_{2}}{w_{3}}\right)}=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)} \\
\Rightarrow & \frac{(0-1)(1-0)}{(0-w)(1-0)}=\frac{(1-i)(-1-z)}{(1-z)(-1-i)} \\
\Rightarrow & \frac{-1}{-w}=\frac{(1-i)(1+z)}{(1-z)(1+i)} \\
\Rightarrow & \frac{1}{w}=\frac{(1-i)^{2}(1+z)}{(1-z)(1+1)} \\
\Rightarrow & \frac{1}{w}=\frac{(1-2 i-1)(1+z)}{2(1-z)} \\
\Rightarrow & \frac{1}{w}=\frac{-2 i(1+z)}{2(1-z)} \\
\Rightarrow & \frac{1}{w}=\frac{i(z+1)}{(z-1)} \\
\Rightarrow & w=\frac{(z-1)}{i(z+1)} \\
\Rightarrow & w=\frac{i(1-z)}{(1+z)}
\end{aligned}
$$

Hence, $w=\frac{i(1-z)}{1+z}$ is the required bilinear transformation.
Example 1.5.6. Show that the condition for the transformation $w=\frac{a z+b}{c z+d}$ to make the circle $|w|=1$ correspond to a straight line in the z-plane is $|a|=|c|$.

Solution: $w=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C}$. Let $a=a_{1}+i a_{2}, b=b_{1}+i b_{2}, c=c_{1}+i c_{2}$, $d=d_{1}+i d_{2}$, where $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}, j=1,2$.

$$
\begin{aligned}
w & =\frac{a z+b}{c z+d} \\
& =\frac{\left(a_{1}+i a_{2}\right)(x+i y)+\left(b_{1}+i b_{2}\right)}{\left(c_{1}+i c_{2}\right)(x+i y)+\left(d_{1}+i d_{2}\right)} \\
& =\frac{\left(a_{1} x-a_{2} y+b_{1}\right)+i\left(a_{2} x+a_{1} y+b_{2}\right)}{\left(c_{1} x-c_{2} y+d_{1}\right)+i\left(c_{2} x+c_{1} y+d_{2}\right)}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& |w|=1 \\
\Rightarrow & |w|^{2}=1 \\
\Rightarrow & \left|\frac{\left(a_{1} x-a_{2} y+b_{1}\right)+i\left(a_{2} x+a_{1} y+b_{2}\right)}{\left(c_{1} x-c_{2} y+d_{1}\right)+i\left(c_{2} x+c_{1} y+d_{2}\right)}\right|^{2}=1 \\
\Rightarrow & \left|\left(a_{1} x-a_{2} y+b_{1}\right)+i\left(a_{2} x+a_{1} y+b_{2}\right)\right|^{2}=\left|\left(c_{1} x-c_{2} y+d_{1}\right)+i\left(c_{2} x+c_{1} y+d_{2}\right)\right|^{2} \\
\Rightarrow & \left(a_{1} x-a_{2} y+b_{1}\right)^{2}+\left(a_{2} x+a_{1} y+b_{2}\right)^{2}=\left(c_{1} x-c_{2} y+d_{1}\right)^{2}+\left(c_{2} x+c_{1} y+d_{2}\right)^{2} \\
\Rightarrow & \left(a_{1}^{2}+a_{2}^{2}-c_{1}^{2}-c_{2}^{2}\right)\left(x^{2}+y^{2}\right)+2\left(a_{1} b_{1}+a_{2} b_{2}+c_{1} d_{1}+c_{2} d_{2}\right) y+\left(b_{1}^{2}+b_{2}^{2}+d_{1}^{2}+d_{2}^{2}\right)=0
\end{aligned}
$$

Now, if the circle $|w|=1$ corresponds to a straight line in the z-plane then

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}-c_{1}^{2}-c_{2}^{2}\right)=0 \\
\Rightarrow & a_{1}^{2}+a_{2}^{2}=c_{1}^{2}+c_{2}^{2} \\
\Rightarrow & \left|a_{1}+i a_{2}\right|^{2}=\left|c_{1}+i c_{2}\right|^{2} \\
\Rightarrow & \left|a_{1}+i a_{2}\right|=\left|c_{1}+i c_{2}\right| \\
\Rightarrow & |a|=|c| .
\end{aligned}
$$

Example 1.5.7. Show that the transformation $w=\frac{i(1-z)}{1+z}$ maps the circle $|z|=1$ into the real axis of the w-plane and the interior of the circle $|z|<1$ into the upper half of the w-plane.

Solution: $w=\frac{i(1-z)}{1+z}$. Then $z=\frac{-(w-i)}{w+i}$

$$
\begin{equation*}
|z|=\left|\frac{w-i}{w+i}\right|=\left|\frac{u+i(v-1)}{u+i(v+1)}\right| \tag{1.16}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& |z|=1 \\
\Rightarrow & \left|\frac{u+i(v-1)}{u+i(v+1)}\right|=1 \\
\Rightarrow & |u+i(v-1)|=|u+i(v+1)| \\
\Rightarrow & u^{2}+(v-1)^{2}=u^{2}+(v+1)^{2} \\
\Rightarrow & u^{2}+v^{2}-2 v+1=u^{2}+v^{2}+2 v+1 \\
\Rightarrow & -2 v=2 v \\
\Rightarrow & 4 v=0 \\
\Rightarrow & v=0
\end{aligned}
$$

which is the real axis of the w-plane.
If $|z|<1$ then from (1.17), we get

$$
\begin{aligned}
& u^{2}+(v-1)^{2}<u^{2}+(v+1)^{2} \\
\Rightarrow & (v-1)^{2}<(v+1)^{2} \\
\Rightarrow & v^{2}-2 v+1<v^{2}+2 v+1 \\
\Rightarrow & 0<4 v \\
\Rightarrow & v>0
\end{aligned}
$$

which is the upper half of the w-plane.
Example 1.5.8. Find the image of the first quadrant of z-plane under the transformation $w=z^{2}$.

Solution: Let $w=R e^{i \phi}, z=r e^{i \theta}$. Then the transformation $w=z^{2}$ becomes $R e^{i \phi}=$ $r^{2} e^{2 i \theta}$

$$
\Rightarrow R=r^{2} \text { and } \phi=2 \theta
$$

Now, the first quadrant in the z-plane, can be expressed in polar form as $0 \leq r<\infty$ and $0 \leq \theta \leq \pi / 2$.
$\therefore 0 \leq r^{2}<\infty$ and $0 \leq 2 \theta \leq \pi$.
Thus, $0 \leq R<\infty$ and $0 \leq \phi \leq \pi$ which is upper half of the w-plane.

